246 research outputs found

    Smart Surrogate Widgets for Direct Volume Manipulation

    Get PDF
    Interaction is an essential aspect in volume visualization, yet common manipulation tools such as bounding boxes or clipping plane widgets provide rather crude tools as they neglect the complex structure of the underlying data. In this paper, we introduce a novel volume interaction approach based on smart widgets that are automatically placed directly into the data in a visibility-driven manner. By adapting to what the user actually sees, they act as proxies that allow for goal-oriented modifications while still providing an intuitive set of simple operations that is easy to control. In particular, our method is well-suited for direct manipulation scenarios such as touch screens, where traditional user interface elements commonly exhibit limited utility. To evaluate out approach we conducted a qualitative user study with nine participants with various backgrounds.acceptedVersio

    Performance and quality analysis of convolution-based volume illumination

    Get PDF
    Convolution-based techniques for volume rendering are among the fastest in the on-the-fly volumetric illumination category. Such methods, however, are still considerably slower than conventional local illumination techniques. In this paper we describe how to adapt two commonly used strategies for reducing aliasing artifacts, namely pre-integration and supersampling, to such techniques. These strategies can help reduce the sampling rate of the lighting information (thus the number of convolutions), bringing considerable performance benefits. We present a comparative analysis of their effectiveness in offering performance improvements. We also analyze the (negligible) differences they introduce when comparing their output to the reference method. These strategies can be highly beneficial in setups where direct volume rendering of continuously streaming data is desired and continuous recomputation of full lighting information is too expensive, or where memory constraints make it preferable not to keep additional precomputed volumetric data in memory. In such situations these strategies make single pass, convolution-based volumetric illumination models viable for a broader range of applications, and this paper provides practical guidelines for using and tuning such strategies to specific use cases

    Vis-a-Vis: Visual Exploration of Visualization Source Code Evolution

    Get PDF
    Developing an algorithm for a visualization prototype often involves the direct comparison of different development stages and design decisions, and even minor modifications may dramatically affect the results. While existing development tools provide visualizations for gaining general insight into performance and structural aspects of the source code, they neglect the central importance of result images unique to graphical algorithms. In this paper, we present a novel approach that enables visualization programmers to simultaneously explore the evolution of their algorithm during the development phase together with its corresponding visual outcomes by providing an automatically updating meta visualization. Our interactive system allows for the direct comparison of all development states on both the visual and the source code level, by providing easy to use navigation and comparison tools. The on-the-fly construction of difference images, source code differences, and a visual representation of the source code structure further enhance the user's insight into the states' interconnected changes over time. Our solution is accessible via a web-based interface that provides GPU-accelerated live execution of C++ and GLSL code, as well as supporting a domain-specific programming language for scientific visualization.acceptedVersio

    Towards Advanced Interactive Visualization for Virtual Atlases

    Get PDF
    Under embargo until: 2020-07-24An atlas is generally defined as a bound collection of tables, charts or illustrations describing a phenomenon. In an anatomical atlas for example, a collection of representative illustrations and text describes anatomy for the purpose of communicating anatomical knowledge. The atlas serves as reference frame for comparing and integrating data from different sources by spatially or semantically relating collections of drawings, imaging data, and/or text. In the field of medical image processing, atlas information is often constructed from a collection of regions of interest, which are based on medical images that are annotated by domain experts. Such an atlas may be employed, for example, for automatic segmentation of medical imaging data. The combination of interactive visualization techniques with atlas information opens up new possibilities for content creation, curation, and navigation in virtual atlases. With interactive visualization of atlas information, students are able to inspect and explore anatomical atlases in ways that were not possible with the traditional method of presenting anatomical atlases in book format, such as viewing the illustrations from other viewpoints. With advanced interaction techniques, it becomes possible to query the data that forms the basis for the atlas, thus empowering researchers to access a wealth of information in new ways. So far, atlas-based visualization has been employed mainly for medical education, as well as biological research. In this survey, we provide an overview of current digital biomedical atlas tasks and applications and summarize relevant visualization techniques. We discuss recent approaches for providing next-generation visual interfaces to navigate atlas data that go beyond common text-based search and hierarchical lists. Finally, we reflect on open challenges and opportunities for the next steps in interactive atlas visualization.acceptedVersio

    Visception: An Interactive Visual Framework for Nested Visualization Design

    Get PDF
    Nesting is the embedding of charts into the marks of another chart. Related to principles such as Tufte’s rule of utilizing micro/macro readings, nested visualizations have been employed to increase information density, providing compact representations of multi-dimensional and multi-typed data entities. Visual authoring tools are becoming increasingly prevalent, as they make visualization technology accessible to non-expert users such as data journalists, but existing frameworks provide no or only very limited functionality related to the creation of nested visualizations. In this paper, we present an interactive visual approach for the flexible generation of nested multilayer visualizations. Based on a hierarchical representation of nesting relationships coupled with a highly customizable mechanism for specifying data mappings, we contribute a flexible framework that enables defining and editing data-driven multi-level visualizations. As a demonstration of the viability of our framework, we contribute a visual builder for exploring, customizing and switching between different designs, along with example visualizations to demonstrate the range of expression. The resulting system allows for the generation of complex nested charts with a high degree of flexibility and fluidity using a drag and drop interface.publishedVersio

    A review and comparative assessment of existing approaches to calculate material footprints

    Get PDF
    Effective implementation of resource policies requires consistent and robust indicators. An increasing number of national and international strategies focussing on resource efficiency as a means for reaching a green economy call for such indicators. As supply chains of goods and services are increasingly organised on the global level, comprehensive indica-tors taking into account upstream material flows associated with internationally traded products need to be compiled. Particularly in the last few years, the development of con-sumption-based indicators of material use also termed material footprints has made considerable progress. This paper presents a comprehensive review of existing methodol-ogies to calculate material footprint-type indicators. The three prevailing approaches, i.e. environmentally extended input-output analysis (EE-IOA), coefficient approaches based on process analysis data, and hybrid approaches combing elements of EE-IOA and process analysis are presented, existing models using the different approaches discussed, and advantages and disadvantages of each approach identified. We argue that there is still a strong need for improvement of the specific approaches as well as comparability of re-sults, in order to reduce uncertainties. The paper concludes with recommendations for further development covering methodological, data and institutional aspects

    Scale-Space Splatting: Reforming Spacetime for the Cross-Scale Exploration of Integral Measures in Molecular Dynamics

    Full text link
    Understanding large amounts of spatiotemporal data from particle-based simulations, such as molecular dynamics, often relies on the computation and analysis of aggregate measures. These, however, by virtue of aggregation, hide structural information about the space/time localization of the studied phenomena. This leads to degenerate cases where the measures fail to capture distinct behaviour. In order to drill into these aggregate values, we propose a multi-scale visual exploration technique. Our novel representation, based on partial domain aggregation, enables the construction of a continuous scale-space for discrete datasets and the simultaneous exploration of scales in both space and time. We link these two scale-spaces in a scale-space space-time cube and model linked views as orthogonal slices through this cube, thus enabling the rapid identification of spatio-temporal patterns at multiple scales. To demonstrate the effectiveness of our approach, we showcase an advanced exploration of a protein-ligand simulation.Comment: 11 pages, 9 figures, IEEE SciVis 201

    Semantic Snapping for Guided Multi-View Visualization Design

    Get PDF
    Visual information displays are typically composed of multiple visualizations that are used to facilitate an understanding of the underlying data. A common example are dashboards, which are frequently used in domains such as finance, process monitoring and business intelligence. However, users may not be aware of existing guidelines and lack expert design knowledge when composing such multi-view visualizations. In this paper, we present semantic snapping, an approach to help non-expert users design effective multi-view visualizations from sets of pre-existing views. When a particular view is placed on a canvas, it is “aligned” with the remaining views-not with respect to its geometric layout, but based on aspects of the visual encoding itself, such as how data dimensions are mapped to channels. Our method uses an on-the-fly procedure to detect and suggest resolutions for conflicting, misleading, or ambiguous designs, as well as to provide suggestions for alternative presentations. With this approach, users can be guided to avoid common pitfalls encountered when composing visualizations. Our provided examples and case studies demonstrate the usefulness and validity of our approach.acceptedVersio

    SplitStreams: A Visual Metaphor for Evolving Hierarchies

    Get PDF
    The visualization of hierarchically structured data over time is an ongoing challenge and several approaches exist trying to solve it. Techniques such as animated or juxtaposed tree visualizations are not capable of providing a good overview of the time series and lack expressiveness in conveying changes over time. Nested streamgraphs provide a better understanding of the data evolution, but lack the clear outline of hierarchical structures at a given timestep. Furthermore, these approaches are often limited to static hierarchies or exclude complex hierarchical changes in the data, limiting their use cases. We propose a novel visual metaphor capable of providing a static overview of all hierarchical changes over time, as well as clearly outlining the hierarchical structure at each individual time step. Our method allows for smooth transitions between tree maps and nested streamgraphs, enabling the exploration of the trade-off between dynamic behavior and hierarchical structure. As our technique handles topological changes of all types, it is suitable for a wide range of applications. We demonstrate the utility of our method on several use cases, evaluate it with a user study, and provide its full source code.acceptedVersio
    • …
    corecore